

DEMO DISTRICT

Balancing the microgrid inside the public grid

Short description

- A microgrid is a localised and independent energy system that can generate, store, and distribute electricity and heat
- It operates as a small-scale, self-contained energy network within a larger power grid.

Microgrid components at the Baumwollspinnerei:

- 70.47 kWp PV Plant (63,000 kWh/a)
- 50 kW/48 kWh Lithium-Ion Battery
- Combined Heat and Power (CHP) units (50 kWe / 90 kWth, 99 kWe / 173 kWth)
- E-mobility hub with bidirectional charging
- Digital meters and sensors monitoring energy flows
- Energy monitoring with cenero.one and load management

BENEFITS:

- Increased grid independence and resilience
- Localised Power Distribution reduces losses
- Efficient renewable energy integration and sector coupling
- Cost savings flattens consumption peaks and utilises waste energy

Peer-2-Peer energy trading interface together with Stadtwerke Leipzig **BENEFITS**:

- Data exchange point mutually transparent to both parties
- Learnings about prosumer approach in energy trading
- Grid Support Services peak shaving and frequency regulation

The Baumwollspinnerei

PARTNERS INVOLVED

Leipziger Stadtwerke

COMPLETION DATE

November/2023

software

Key results during the project lifecycle

- Reaching a regulatory milestone with the grid operator to commission the components. Metering concept agreed upon as a pilot project - potential foundation for future projects
- Increase in share of RES and decentralised energy production (PV and CHPs)
- Increase availability of sustainable E-Mobility
- Using E-Mobility for grid stabilising and peak shaving purposes
- Decrease in consumption through energy monitoring and heat demand control within the microgrid

Insights and learnings

- Gaining valuable insight into the sites energy system and consumption/generation patterns through in-depth energy monitoring - the importance of monitoring was highlighted
- Interconnection of variable generators and consumers in the context of sector coupling
- Load management for grid stabilisation, peak shaving and frequency regulation
- Scalable transformation concept for historical buildings and former industrial sites

- Regulatory reguirements and lack of standards
- Complications agreeing on suitable meter concepts

- Development and continuous advancement of the energy monitoring tool cenero.one
- Advancements and implementation of load management software to allow sector coupling
- Sector coupling to increase efficiency between various consumers and generating plants
- Reducing the site's carbon footprint and increasing the degree of self-sufficiency
- Peer-2-Peer trading with Stadtwerk Leipzig
- Consumer sensibilisation and transparency with energy monitoring
- Transformation from single tenant/use to multiple diverse tenancy - many important findings regarding complexity of consumers and generators in one system
- Energy services uncovering many potential business model typologies for microgrids (Peak shaving, Load managment, etc.)
- Increased understanding of the current state of microgrid legislations and regulations in Germany
- Structural building statics challenges and existing historical network

KEY NUMBERS

70.47 kWp PV (63,000 kWh/a) 50 kW / 48 kWh Lithium-Ion Battery CHP units (50 kWe / 90 kWth, *99 kWe / 173 kWth*)

CO₂ REDUCTION POTENTIAL

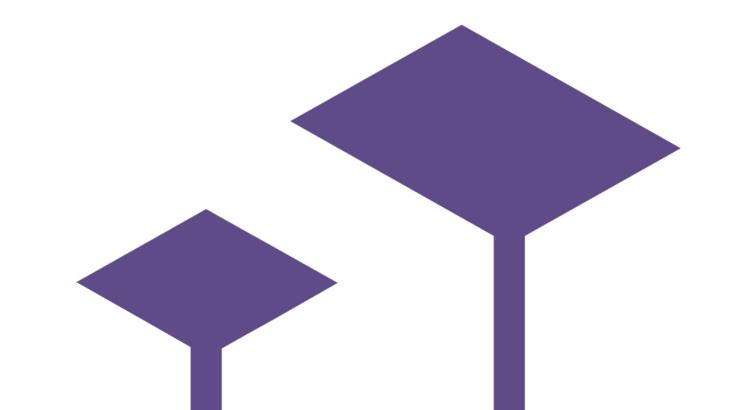
High with upscaling

- Current subsidy guidelines in Germany require energy amounts to be specified according to generation type, which increases the complexity for system and grid operators when there are a variety of different generation systems. The mixing of CHP and renewable energy systems posed major challenges for the Distribution Network Operator responsible for paying out the subsidies
- Monumental protection laws
- Increasing complexity of consumers and generating plants

Plans for replication

Baumwollspinnerei:

- PV Hall 17 80 kWp; 72,000 kWh/a
- PV Hall 3 270 kWp; 243,000 kWh/a
- PV Hall 9 310 kWp; 280,000 kWh/a
- Geothermal heating with seasonal storage
- Further expansion of digital LoRa Network


- Communication of bidirectional vehicle with charging station/ Implementation of the bidirectional prototype of car and charging station
- Communication and coordination with partners
- Contractual challenges
- Billing concepts for bidirectional charging
- Bidirectional charging technology only in prototype stage in Germany
- Workforce shortages of the grid operator
- Delivery delays

Neighbourhood project with Saarländerstraße 25

- Mix of renewable energies
- Sector coupling PV, e-mobility, geothermal heating, waste heat, seasonal storage, electrical storage
- Load management and peak shaving
- Grid services: load management and grid frequency balancing
- Efficient heating with thermal precision profiling of buildings

Comments to be added during poster session at Consortium meeting in Leipzig

CONTACT PERSON AND LINKS

Alexander Vierheilig Gregor Kaczmarek CENERO Energy www.cenero.de

